Scientific and Engineering Projects Class October 16, 2010

Experimentation and Data Analysis

Experimentation

- Projects involving the Scientific Method require experimentation
- Important consideration for designing and conducting an experiment are
 - Control conditions/environment
 - Avoid bias
 - Take accurate measurements
 - Do multiple trials for each set of conditions
 - Take all possible factors into account
 - Safety!

Data Collection and Analysis Introduction

- Many projects, but not all, require the collection and analysis of data
- There are various reasons for data collection and analysis
- Sound scientific techniques must be following in collecting data
- Appropriate analysis is required

What is Data?

- What do you think data is?
 - Distinct pieces of information. For our purposes, the information needs to be quantifiable
 - Factual information, especially information organized for analysis or used to reason or make decisions
- What data, if any, might you collect in your project? Class Discussion

Why Collect Data?

- Many experimental, social science, and product design projects involve collection of data
- Data may be collected for various reasons
 - To compare the effectiveness of different substances
 - Does Tide or Cheer clean grass stains better?
 - To assess the performance of a product
 - How fast can a Ford Mustang accelerate from o-6o mph?
 - To ascertain the effect of a design choice
 - Do packing peanuts or bubble wrap better protect an egg dropped from 20 feet?
 - To determine correlation between various factors
 - Is there a relationship between lung cancer and emphysema?
- Data must be analyzed, often statistically, to answer the questions of interest

Collect Good Data

- To get good results from your analysis, you need good data, no matter how good your statistical techniques
 - GIGO (Garbage In Garbage Out)
- If you're doing a survey, ask the right questions
- If you need to take measurements, make sure you do it as accurately as possible and that you are measuring what you think you are measuring

Exercise

- How would you determine the top speed of a model car?
- How might you characterize the performance of a safety device, like a seatbelt?
- What measurements would you take if you built a solar cooker?

Statistical Analysis

- This next section will serve as a high-level primer on a few statistical concepts
- We won't discuss specific techniques, but you will learn and apply what's appropriate for your project

Requirements

- Quantifiable data
 - Length
 - Weight
 - Speed
 - Time
 - Reliability
 - Percent
- Sufficiently large sample size (number of distinct measurements or data points)

Sample Mean

- Average value
 - The sum of the values of the data points divided by the number of data points
 - Ex. The sample mean of 5 s., 8 s., 13 s., and 7 s. is
 8.25 s.
- An estimate of the Expected Value

Standard Deviation

- A measure of how much the data is spread out
 - A small standard deviation means that the data is mostly clustered close to the sample mean
 - A large standard deviation means the data is more spread apart

Distribution

- A mathematical function that describes the probability that a data point will have a particular value
- Used to characterize the data in a statistical sense

Example of Distribution Functions

Independence

- Two events are independent if the occurrence of one does not affect the probability of the other occurring
- Example 1: Two flips of a coin
 - Event A: First flip of a coin is H
 - Event B: Second flip of a coin is H
- Example 2: Box with 3 red and 2 white balls; draw two balls (First ball is not replaced.)
 - Event C: First ball is white
 - Event D: Second ball is white

Correlation

• A measure of the dependence of two events.

Cause and Effect

- One question that is sometimes asked is whether one condition causes another. This is often the case in epidemiology.
- If two events are strongly correlated, you might investigate whether there is cause and effect relationship between them
- Be careful what conclusions you draw. See the example on the next slide

Example

There's a correlation between lung cancer and emphysema, but neither causes the other. Both can be cause by smoking.

Exercise

- Determine the average number of flips of a coin required to get the first head
- We will do a probabilistic "experiment" and collect several data points
 - Each data point is a sequence of coin flips which lasts as long as it takes to get one head.
 - The data value of the point is the number of flips that were required.
 - Here are three data points:
 - TTH (value = 3)
 - TTTTTH (value = 6)
 - H (value = 1)

Exercise (cont.)

- These are not data points for this experiment:
 - TTHT
 - ТНТТТТН
 - TTT
- Each of you, take out a coin and do ten runs of the experiment and record the results of each one (just the number of flips required)
- We'll pool our results and make some calculations

Summary

- Data collection is required in many projects
- There are standard statistical techniques that you should follow to analyze the data you collect
- This presentation provided an overview of data collection. You should discuss with your Science Forum advisor what is appropriate for your project

Appendix

- This next couple of slides has extra information for those that are interested and that have the background to appreciate it
- We will determine, through calculation, the expected value of the number of coin flips required to get the first head
- First we calculate a distribution function for the random variable N defined as
 - N = number of flips to get the first head

Appendix (cont.)

- Pr(N = 1) = Pr(H on the first flip) = 1/2
- $Pr(N = 2) = Pr(TH) = 1/2 \times 1/2 = (1/2)^2$
- $Pr(N=3) = Pr(TTH) = 1/2 \times 1/2 \times 1/2 = (1/2)^3$
- In general, Pr(N = n) = Pr(n-1 T's)and $1 \text{ H} = (1/2)^{n-1} \times 1/2 = (1/2)^n$
- The value we're interested in is the expected value of N, E(N)
- E(N) is the sum over all values of n of nPr(N = n)
- The rest of the derivation involves advanced mathematical techniques including Calculus. The answer is E(N) = 2. You can verify this by summing 30 or so terms in a spreadsheet