PACE Precalculus

 Name:
 Date:
 October 12, 2011

1. Define odd function

A function f is odd f(-x) = -f(x) for all x.

2. Define even function

A function f is even if f(-x) = f(x) for all x.

3. For $f(x) = x^2 + 1$ fill out the following table using the values of x given in class. Graph the function.

<u>x</u>	-x	f(x)	f(-x)
0	0	1	1
1	-1	2	2
2	-2	5	5
3	-3	10	10
5	-5	25	25
10	-10	101	101

The function appears to be even. To prove it, calculate f(-x) and show that it equals f(x).

$$f(-x) = (-x)^2 + 1 = x^2 + 1 = f(x)$$

So, the function is even.

4. For f(x) = 3x - 1 fill out the following table using the values of x given in class. Then graph the function.

x	-x	f(x)	f(-x)
0	0	-1	-1
1	-1	2	-4
2	-2	5	-7
3	-3	8	-10
5	-5	14	-16
10	-10	29	-31

The function doesn't appear to be either even or odd. To prove it, calculate f(-x) and show that it is equal to neither f(x) or -f(x).

$$f(-x) = 3(-x) - 1 = -3x - 1$$

For f(x) to be even it must be true that

$$-3x - 1 = 3x - 1$$
$$-3x = 3x$$

which is true only for x = 0, not for all x. So, the function is not even.

For f(x) to be odd it must be true that

$$-3x - 1 = -(3x - 1)$$
$$-3x - 1 = -3x + 1$$

which is true only if -1 = 1 and that is never true. So, the function is not odd.

5. For f(x) = x fill out the following table using the values of x given in class. Then graph the function.

x	-x	f(x)	f(-x)
0	0	0	0
-1	1	-1	1
5	-5	5	-5
15	-15	15	-15
100	-100	100	-100

The function appears to be odd. To prove it, calculate f(-x) and show that it equals -f(x).

$$f(-x) = -x = -f(x)$$

So, the function is odd.