PACE Precalculus

Name: \qquad Date: \qquad October 12, 2011

1. Define odd function

A function f is odd $f(-x)=-f(x)$ for all x.
2. Define even function

A function f is even if $f(-x)=f(x)$ for all x.
3. For $f(x)=x^{2}+1$ fill out the following table using the values of x given in class. Graph the function.

x	$-x$	$f(x)$	$f(-x)$
0	0	1	1
1	-1	2	2
2	-2	5	5
3	-3	10	10
5	-5	25	25
10	-10	101	101

The function appears to be even. To prove it, calculate $f(-x)$ and show that it equals $f(x)$.

$$
f(-x)=(-x)^{2}+1=x^{2}+1=f(x)
$$

So, the function is even.
4. For $f(x)=3 x-1$ fill out the following table using the values of x given in class. Then graph the function.

x	$-x$	$f(x)$	$f(-x)$
0	0	-1	-1
1	-1	2	-4
2	-2	5	-7
3	-3	8	-10
5	-5	14	-16
10	-10	29	-31

The function doesn't appear to be either even or odd. To prove it, calculate $f(-x)$ and show that it is equal to neither $f(x)$ or $-f(x)$.

$$
f(-x)=3(-x)-1=-3 x-1
$$

For $f(x)$ to be even it must be true that

$$
\begin{aligned}
-3 x-1 & =3 x-1 \\
-3 x & =3 x
\end{aligned}
$$

which is true only for $x=0$, not for all x. So, the function is not even.
For $f(x)$ to be odd it must be true that

$$
\begin{gathered}
-3 x-1=-(3 x-1) \\
-3 x-1=-3 x+1
\end{gathered}
$$

which is true only if $-1=1$ and that is never true. So, the function is not odd.
5. For $f(x)=x$ fill out the following table using the values of x given in class. Then graph the function.

x	$-x$	$f(x)$	$f(-x)$
0	0	0	0
-1	1	-1	1
5	-5	5	-5
15	-15	15	-15
100	-100	100	-100

The function appears to be odd. To prove it, calculate $f(-x)$ and show that it equals $-f(x)$.

$$
f(-x)=-x=-f(x)
$$

So, the function is odd.

