
Object-Oriented Programming

2

Java Syntax

 Program Structure

 Variables and basic data types.

 Industry standard naming conventions.

 Java syntax and coding conventions

 If … Then … Else …

 Case statements

 Looping (for, while)

 Classes and Methods

Variables & Data Types

4

Data types

 Java supports 8 basic data types known as
Primitive Types.

 Four Integer types

 Two real (or floating-point) types

 A boolean type

 A character type

 Java also supports class and array data
types (collectively known as Reference
types), which will be discussed later.

5

Primitive Types – Integers

Keywor
d

Size Min value Max value

byte 8-bit -128 127

short 16-bit -32768 32767

int 32-bit -2147483648 2147483647

long 64-bit - 92233720368547758087 9223372036854775807

 int daysInYear = 365;

/* declares an integer named

daysInYear, assigns it the value

of 365*/

6

Primitive Types – Real Numbers

Keyword Size Min value Max value

float 32-bit 1.4E-45 3.4028235E38

double 64-bit 4.9E-324

1.797693134862315
7E308

 float price = 8.99f;

/* declares a float named price, assigns

it the value of 8.99 */

7

Primitive Types – Boolean/char

 boolean trustworthy = true;

 char firstLetter = 'a';

Keywor
d

Size or
Format

Description

boolean true/false true or false

char 16-bit
Unicode

A single character

\u0000 - \uFFFF

8

Strings

 A String represents a group of characters.

 String is not a primitive type, it is a Java class.

 Strings can be used like primitive types in
many ways.

 Assign literal values or Add Strings together

 We’ll discuss String in detail later.

System.out.println("Joe");

String name = "Joe";

System.out.println(name);

String fullName = name + " Thomas";

9

Variable Naming Conventions

 Variables must start with a letter, a
dollar sign ($), or an underscore (_).

 Followed by any of the above
characters and/or numbers.

 Can be any length.

 Avoid short abbreviations - your tools
will do most of the typing for you!

10

Naming Conventions cont

 Variables cannot be a Java keyword, or any
Java reserved keyword.

 By convention, begin with a lowercase letter
and no separating character between words
(also called the title case rule).

 Each following word starts with a capital letter.

 myVariableName

 int registration = 100;

short conferenceRoomCapacity = 500;

float feePerPerson = 1199.99f;

boolean conferenceIsCancelled = false;

11

Java and Case-Sensitivity

Java is a case sensitive language. ‘result’
and ‘Result’ are different variables.

REMEMBER: Everything in Java is CASE
sEnSiTiVe.

int result = 123;

int Result = 123; // don’t do this!

Java Program Statements

13

Java Statements

Each Java statement ends with a “;”.

It is permitted to have two or more
statements on a single line, but it is not
recommended.

int count;

char indicator;

int x = 0; int y = 1;

14

Block

 A block is zero or more Java
statements

 Blocks are defined by { }

{

 int x = 5;

 int y = 0;

}

15

Scope Rules

 A variable is available only within its
‘scope’.

 Scope is the defining block and all
contained blocks.

{

 {

 int x = 5;

 System.out.println(x);

 }

 System.out.println(x); // error!

}

16

Scope Rules - Example 2

{

 int x = 10;

 {

 int x = 5; // error!

 System.out.println(x);

 }

 System.out.println(x);

}

17

Find the Defect 1

 There is an naming convention
mistake in the following program. Can
you find it?

 public class MyClass {

 public static void main(String args[])

 {

 String Name = "Bob";

 System.out.println(name);

 }

}

18

public class MyClass {

 public static void main(String args[])

 {

 System.out.println(Hello there!);

 }

}

Find the Defect 2

 There is one syntax error in the
following code. Can you find it?

19

Find the Defect 3

 There are two syntax errors in the
following code. Can you find them?

 public class MyClass {

 public static void main(String args[])

 {

 system.out.println("Hello there!")

 }

}

Key Points

 Java statements must end with a ‘;’

 Variables must have a type

 Variables must have a name

 int count;

 Java is case sensitive

20

21

Comments

 Two ways to comment in Java:

 Single Line Comment

 Multiple Line Comment

int states = 50; // current number of states

/* This code computes the total amount due by the

customer including applicable interest, late fees

and principal by the next due date */

float amountDue = principal + latefees + interest;

Performing Calculations in
Java

23

Arithmetic Operators

Operator Description Example

+ add y = x + 1;

- subtract y = x - 1;

* multiply y = x * 10;

/ divide y = x / 5;

% modulus – returns
remainder

y = x % 3;

24

Operator Precedence

Java’s Mathematical Order of Precedence

 The operator precedence defines what operators take
precedence over other operators, and hence get
executed first.

 Expressions contained within parenthesis are
evaluated first.

 The order of precedence for the mathematical
operators is from left to right in the following
order:

 Multiplication and Division

 Addition and Subtraction

25

Operator Precedence

Example Explanation

int x = 2;

int y = 10;

int z = 3;

int r;

Example 1:

r = x + y * z;

// result is 32

Example 2:

r = (x + y) * z;

// result is 36

Rule: Parenthesis determine
1st order of mathematical
operations.

Example 1:

Multiplication first; then addition

Example 2:

Math proceeds first with the
parenthesis then the
multiplication takes place.

26

Lab #1

 Ask user to state the price of an item to be
purchased. Display a bill to the user that shows
the original price, the amount of tax to be
charged at NJ tax rate, and the total amount the
customer will pay.

1. Turn Pseudo-code into Java code
1. What type of variables need to be declared

2. What are the key formulas?

3. What do you have to print out?

2. Create print statement(s) that output:

Price: 20
Tax: 1.4
Total: 21.4

Branching & Decision-Making

If … Else …

If / Else provides a way to make
decisions between 2 possible paths

 If (trafficLight = ‘Green’)

 Drive();

 Else

 Stop();

28

29

if/else Statements

if (test condition) {

 do this when true;

} else {

 do this when false;

}

30

if/else Example

int x;

System.out.println(“Enter a number");

x = input.nextInt();

if (x > 10) {

 System.out.println("x is greater than 10");

} else {

 System.out.println("x is NOT greater than

10");

31

Nested if/else Statements

if (test condition) {

 do this when true;

} else if (2nd test condition){

 do this when true for 2nd condition;

} else {

 do this if both test conditions are false

}

32

Nested if/else Example

int x;

System.out.println(“Enter a number");

x = input.nextInt();

if (x > 10) {

 System.out.println("x is greater than 10");

} else if (x < 10) {

 System.out.println("x is less than 10");

} else {

 System.out.println("x is equal to 10!");

}
 The else can be combined with if. The last else

becomes the default condition.

33

Test Condition Operators

Operator Description Example

< less than if (x < y)

> greater than if (x > y)

>= greater than or
equal

if (x >= y)

<= less than or equal if (x <= y)

== equality (notice
there are TWO =
signs here)

if (x == y)

= assignment x = y;

!= not equal if (x != y)

! negation “not” if (!false)

34

Equality Operator

 ‘==‘ is very different from “=“.

 Rule:
 ‘==‘ is used to compare two variables.

 ‘=‘ is used only for assignment.

if (a = 0) // compiler error!

if (a == 0) // compiler happy!

35

Logical Operators

Operator Example Description

&& ((x==5)&&(y==3)) Conditional statements using &&
(Logical AND) or || (Logical OR)
are only evaluated as much as needed
to make a DEFINITE decision.

These are known as short-circuit
operators, and should USUALLY be
used in conditional statements.

|| ((x==5)||(y==3))

Branching & Decision-Making

case / switch statements

37

switch statement

 switch statement is used when multiple,
discreet options exist

System.out.println(“Pick a number from 1 to 3”);

int number = input.nextInt();

String winner = “”;

switch (number) {

case 1: winner = “Big Prize!”; break;

case 2: winner = “Medium Prize!”; break;

case 3: winner = “Small Prize!”; break;

default: winner = “No Prize!”; break;

}

System.out.println(“You win: ” + winner);

38

switch statement

 General format:

 default is used when there is no match on any other choice

Initialize option variable;

switch (option variable) {

case choice1: do something; break;

case choice2 : do something; break;

case choice3 : do something; break;

… and so on …

default: do default action; break;

}

Repeating your program steps

Looping

40

for Loops

 A Java ‘for’ loop repeats a block of
statements a fixed number of times.

for (int i = 0; i < 4; i++) {

 System.out.println(i);

}

Output:
0
1
2

3
What is the value of ‘i’ after the for loop?

for Loops

 General format:

 As long as the for loop test condition
remains true, the loop will continue to run

for (initialize control variable; specify test

condition; increment or decrement control variable) {

 do something;

}

42

Increment/Decrement Operators

 With the “Pre” operators the variable is
inc/decremented BEFORE it is used.

 With the “Post” operators the variable is
inc/decremented AFTER it is used.

Keyword Description Code Equivalent

++var Pre-Increment ++x; x = x + 1;

var++ Post-Increment x++; x = x + 1;

--var Pre-Decrement --x; x = x – 1;

var-- Post-Decrement x--; x = x – 1;

43

Pre-Post Increment/Decrement Example

Initial x Expressio
n

Final y Final x

3 y=x++ 3 4

3 y=++x 4 4

3 y=x-- 3 2

3 y=--x 2 2

44

while Loops

 A Java ‘while’ loop continually executes a block
of statements while a condition remains true.

 A while loop executes zero or more times.

int rightAnswer = 3;

int userAnswer = 0;

boolean correct = false;

while (not correct) {

 System.out.println(“Guess a number 0 to 9”);

userAnswer = input.nextInt();

if (userAnswer == rightAnswer) {

 correct = true;

 System.out.println(“Congratulations! You are right!”);

} else {

 System.out.println(“Wrong. Try again.”);

}

}

45

while Loops – 2nd Example

int rightAnswer = 3;

int userAnswer = 0;

int numTries = 1; // counts number of attempts by the user

int triesLeft;

boolean correct = false;

while (not correct) && (numTries < 4) {

 System.out.println(“Guess a number 0 to 9”);

userAnswer = input.nextInt();

if (userAnswer == rightAnswer) {

 correct = true;

System.out.println(“Congratulations! You are right!”);

} else {

 System.out.println(“Sorry. Wrong answer.”);

 triesLeft = 3 – numTries;

 System.out.println(“You get “ + triesLeft + “ more

try / tries.”)

 numTries ++;

}

}

while Loops

 General format:

 As long as the while loop test condition
remains true, the loop will continue to run

initialize control variable to true state;

while (specify test condition) {

 do something;

 if (end loop test condition) {

 set control variable to opposite state;

 }

}

47

break Statement and Loops

 The ‘break’ statement immediately
ends a loop. What is the output?

int i = 0

while(i < 5) {

 if (i == 2) {

 break;

 }

 i++;

 System.out.println(i);

}

48

continue Statement and
Loops

 A ‘continue’ statement allows one to skip
the rest of the current loop iteration. What
is the output?

for (int i = 0; i < 5; i++) {

 if (i == 2) {

 continue;

 }

 System.out.println(i);

}

Classes & Methods

Classes & Methods

 Up until now, we’ve been creating
simple programs with a single
method - main

public Class Classname {

public static void main (String[] args) {

Do something;

 }

}

Classes & Methods

 We now want to create classes with
specialized methods

public Class MyClass {

public static void method1 () {

Do something;

// this method has no inputs and no return value

 }

public static float method2 (int varName) {

 float newValue = 0;

 newValue = Do something with varName;

 return(newValue);

 // this method takes an integer and returns a float

 }

}

Classes & Methods

 We want our main program to call those
classes and their methods

public Class MainClass {

public static void main (String[] args) {

MyClass.method1(); //no inputs to method1

System.out.println(“Enter your selection: ”);

int i = input.nextInt();

int k;

k = MyClass.method2(i); //the input to method2 is (i)

 }

}

Classes & Methods

 Method that has no input and no
return value

public Class MyClass {

public static void method1 () {

do something;

// the empty parentheses, (), indicates no input value

// The use of void indicates no return value

 }

}

Classes & Methods

 Method that has both an input and a return value

public Class MyClass {

public static returnValueType method2 (type inputVariable) {

 returnValueType returnVariable; // declare variable

 returnVariable = do something with inputVariable;

 return (returnVariable);

 /* this method takes inputVariable, manipulates it

 and sends back returnVariable */

 }

}

Extra, unused slides

56

Lab Practice – if/else

 Let’s practice using if then/else and loops.
We’ll test integers from 1 to 10 to
determine if the number is even or odd and
print it. HINT: We need to us % operator.
Output:

 1 is odd

 2 is even

 3 is odd

 …

 10 is even

57

Our first program: Hello World

 print(), println()
 Use escape character to format output: \n \t

class HelloWorld{

 static public void main(String[] args){

 System.out.print("Hello");
 System.out.print(", World");
 System.out.print("\nHello\n");

 // \n means new line
 System.out.println("Hello!");

 //println prints a line followed by a line break
 System.out.println();

 //this prints an empty line
 System.out.print("H\te\tl\tl\to");

 // \t means tab

 }

}

58

Lab #1

 Edit your HelloWorld program to practice
declaring and using Java primitive types.

1. declare an int named age, assign it a value.

2. declare a double named d, assign it a value.

3. declare a boolean named isCrazy, assign it a true
value.

4. declare an char named exclaim, assign it a value
‘!’.

5. declare a string named name, assign it your
name.

6. Create a print statement that outputs:

 Hello Lori, You are 18 years old!

59

Shorthand Operators in Java

 You may code either way, code performance
is not affected.

Java Shorthand Equivalent Expanded
Java

x += 2; or x+=2; x = x + 2;

x -= 3; or x-=3; x = x - 3;

x *= 4; or x*=4; x = x * 4;

x /= 5; or x/=5; x = x / 5;

x %= 6; or x%=6; x = x % 6;

60

Lab

 Write new class named operTest

 Declare variables x and y.

 Set x to 1.

 Set y = ++x;

 Print “y = ++x is” + y.

 Set x = 1.

 Set y = x++;

 Print “y = x++ is” + y.

61

& ‘AND’ Example

 Why is this a problem?

int x = 5;

int y = 0;

if ((y > 0) & ((x / y) > 6))

 x = x + 1;

62

Short Circuit ‘AND’ Example

 Why does this work better?

int x = 5;

int y = 0;

if ((y > 0) && ((x / y) > 6))

 x = x + 1;

63

| ‘OR’ Example

 Why is this inefficient?

boolean cash = true;

boolean credit = false;

boolean check = true;

if (cash | credit | check)

 //do something

64

Short Circuit ‘OR’ Example

 Why is this more efficient?

boolean cash = true;

boolean credit = false;

boolean check = true;

if (cash || credit || check)

 //do something

